Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887752

RESUMO

As demands for fresh water become more competitive between the processing plant and other consumers of water such as municipalities, interest has grown in recycling or reusing water for food processing. However, recycling the processing water from a poultry plant, for example, represents challenges due to increased organic loads and the presence of bacterial contaminants including foodborne pathogens. The objective in the current study was to evaluate the inactivation of Salmonella and E. coli O157:H7 using combinations (0.5% and 1%) of sodium bisulfate (SBS) and 1% lactic acid (LA) in water and water with organic matter in the form of horse blood serum (0.3%) with exposure times of 1 min and 5 min. Pathogen reductions after a 5 min exposure time were greater than corresponding reductions after a 1 min exposure time for all acid solutions. The Salmonella counts were significantly reduced (i.e., ≥1 log-unit) in all acid solutions after a 5 min exposure time with the combination of LA + SBS acid solutions being more effective than the corresponding 2% LA solutions. None of the acid solutions were effective in reducing the E. coli O157:H7 after a 1 min exposure time. The 1% LA + 1% SBS solution was the most effective acid solution against both pathogens and was the only acid solution effective in reducing E. coli O157:H7 by at least one log unit after 5 min of exposure.

2.
Transl Anim Sci ; 6(1): txac011, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35233512

RESUMO

This study evaluated the effects of antimicrobial acidulant addition on lipid oxidation of rendered chicken fat. Chicken fat was untreated (control) or treated with either sodium bisulfate (SBS) or lactic acid (LA) at 0.5% w/w and incubated for 6 wk at 40 °C. Peroxide value (PV), p-anisidine value (AV), and free fatty acid (FFA) levels were measured at days 0 (D0), 1(D1), 3 (D3), 5 (D5), and 7 (D7), and weeks 2 (W2), 3 (W3), 4 (W4), 5 (W5), and 6 (W6). The FFA level of untreated-control fat was ~7% and remained consistent throughout the incubation until W6 (~8.5%; P < 0.05). The FFA values in SBS-treated fat were constant (range 7.25%-8.30%) throughout the incubation, whereas the FFA in LA-treated fat peaked at W5 (9.3%; P < 0.05). For the control fat, PVs were between 0.56 and 0.67 meq/100 g until W1 then declined. For the SBS-treated fat, the PVs remained low and similar to the control with the exception of a slight increase on W4 to 0.38 meqv/100 g (P < 0.05). In the LA-treated fat, the PV was greater than (P < 0.05) the control from W1 and increased to a peak on W5 (2.52 meq/100 g). The AV of control fat averaged 2.12 at D0 and increased through W2. In control and LA-treated fat, the AV values declined slightly thereafter, whereas SBS-treated fat increased (P < 0.05) to 10.28 on W5. This study indicates that when included at antimicrobial effective levels, LA may reduce the shelf-life of chicken fat, but SBS had a minimal effect over 6 wk of storage.

3.
PLoS One ; 17(1): e0262167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051217

RESUMO

Listeria monocytogenes has been implicated in several ready-to-eat (RTE) foodborne outbreaks, due in part to its ability to survive under refrigerated conditions. Thus, the objective of this study was to evaluate the effects of sodium bisulfate (SBS), sodium lactate (SL), and their combination as short-duration antimicrobial dips (10-s) on L. monocytogenes and the microbiome of inoculated organic frankfurters (8 Log10 CFU/g). Frankfurters were treated with tap water (TW), SBS0.39%, SBS0.78%, SL0.78%, SL1.56%, SBS+SL0.39%, SBS+SL0.78%. In addition, frankfurters were treated with frankfurter solution water (HDW)+SBS0.78%, HDW+SL1.56%, and HDW+SBS+SL0.78%. After treatment, frankfurters were vacuum packaged and stored at 4°C. Bacterial enumeration and 16S rDNA sequencing occurred on d 0, 7, 14, 21. Counts were Log10 transformed and calculated as growth potential from d 0 to d 7, 14, and 21. Data were analyzed in R using mixed-effects model and One-Way ANOVA (by day) with differences separated using Tukey's HSD at P ≤ 0.05. The 16S rDNA was sequenced on an Illumina MiSeq and analyzed in Qiime2-2018.8 with significance at P ≤ 0.05 and Q ≤ 0.05 for main and pairwise effects. An interaction of treatment and time was observed among the microbiological plate data with all experimental treatments reducing the growth potential of Listeria across time (P < 0.0001). Efficacy of treatments was inconsistent across time; however, on d 21, SBS0.39% treated franks had the lowest growth potential compared to the control. Among diversity metrics, time had no effect on the microbiota (P > 0.05), but treatment did (P < 0.05). Thus, the treatments potentially promoted a stable microbiota across time. Using ANCOM, Listeria was the only significantly different taxa at the genus level (P < 0.05, W = 52). Therefore, the results suggest incorporating SBS over SL as an alternative antimicrobial for the control of L. monocytogenes in organic frankfurters without negatively impacting the microbiota. However, further research using multiple L. monocytogenes strains will need to be utilized in order to determine the scope of SBS use in the production of RTE meat.


Assuntos
Anti-Infecciosos/farmacologia , Armazenamento de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Lactato de Sódio/farmacologia , Sulfatos/farmacologia , Animais , Bovinos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Listeria monocytogenes/genética , Produtos da Carne/microbiologia , Microbiota/efeitos dos fármacos , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Refrigeração , Fatores de Tempo
4.
Transl Anim Sci ; 6(1): txab232, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35088042

RESUMO

Salmonella subs. serovar Enteritidis is a potential biological pathogen of concern in the poultry industry. Contamination of the bacterium on eggshells has led to human illnesses. With the implementation of new regulations, animal feed manufacturing continues to be under more stringent requirements. Specifically, there is zero tolerance for Salmonella Pullorum, Gallinarum, or Enteritidis in poultry feed. For this reason, it is important to determine an effective method of reducing or preventing Salmonella contamination in feed for poultry. Therefore, the objective of this study was to evaluate the impact of sodium bisulfate (SBS; Jones-Hamilton, Co., Walbridge, OH) added to poultry mash to reduce or prevent Salmonella growth over time. A single, commercially produced all-flock poultry mash was mixed with four different levels of SBS: 0.0%, 0.25%, 0.50%, and 0.70%. After SBS addition, the treated mash was inoculated with Salmonella enterica subsp, enterica serovar Enteritidis (ATCC 13076) and enumerated for Salmonella on days 0, 1, 2, 7, and 14 post-inoculation by plating on xylose lysine deoxycholate agar. There was no significant effect of SBS inclusion level on the reduction of Salmonella (P = 0.23); however, there was a significant effect of time across treatments (P < 0.0001). Additionally, there was no inclusion level × time interaction (P = 0.68). These results suggest that while SBS inclusion has no effect on Salmonella concentrations, storage time is effective at reducing or eliminating Salmonella contamination in poultry feed.

5.
Food Microbiol ; 92: 103595, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950137

RESUMO

During fresh apple packing, wash water in the dump tank and flume systems is reused during daily production, resulting in high levels of organic matter in the wash water. This study evaluated the antimicrobial efficacy of sodium acid sulfate (SAS), a Generally Recognized as Safe compound, against Listeria monocytogenes on fresh apples in a water system with high organic load. SAS at 1.0% reduced L. monocytogenes population in water with 1000 ppm chemical oxygen demand (COD) by more than 5.0 Log10 CFU/ml in 5 min, 2.0-3.0% SAS reduced L. monocytogenes to undetectable levels (10 CFU/ml) within 2 min regardless of organic levels. When applied on apples, a 2-min wash with SAS at 1.0, 1.5, 2.0, and 3.0% reduced L. monocytogenes by ~1.3, 1.9, 2.3, and 3.0 Log10 CFU/apple in clean water, respectively. High organic load in wash water up to 4000 ppm COD had no impact on the bactericidal effect of SAS against L. monocytogenes on fresh apples regardless of SAS concentrations. Shortening the contact time from 2 min to 30 s significantly reduced the antimicrobial efficacy of 25 ppm chlorine and 1.0-2.0% SAS but not that of 3.0% SAS. In addition, SAS at 1.0% demonstrated a better efficacy than 25 ppm chlorine in reducing fruit-to-water cross-contamination regardless of organic matter. SAS also showed a comparable efficacy as 25 ppm chlorine in reducing fruit-to-fruit cross-contamination in water with organic matter. The collective data indicate that SAS, as an enviroment-friendly compound, has the potential to be used as an alternative antimicrobial washing aid in dump tank process water intervention in apple packing facilities.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Água Doce/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Malus/microbiologia , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/instrumentação , Água Doce/análise , Frutas/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento
6.
J Food Prot ; 82(11): 1864-1869, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31613163

RESUMO

This study was conducted to evaluate the effects of sodium bisulfate (SBS), lactic acid (LA), phosphoric acid (PA), and combinations of organic acids with SBS on Salmonella in rendered chicken fat and in water. The MICs of the antimicrobials individually and in combination were determined. Efficacies of the antimicrobials against Salmonella were tested in both media. The MICs of SBS, LA, and PA were 0.5, 0.5, and 0.25%, respectively. At the given concentrations in the water phase, 0.5% SBS was more effective (P < 0.05; 2.7-log reduction) than LA and PA at 0 h. SBS and LA were more effective (P < 0.05) than PA with >4-log reductions at 2 h and complete kill at 6 h. After 24 h, each of the chemicals completely eliminated the Salmonella. However, because of low recovery in the fat phase, Salmonella was not detected after 12 h and all three chemicals effectively reduced (P < 0.05) Salmonella at 6 h compared with the control. When combinations were used in the water phase, SBS plus butyric acid decreased (P < 0.05) Salmonella by >5.5 log CFU/mL after 12 h. The SBS+LA combinations were effective (P < 0.05) after 2 h. The combinations of SBS+PA resulted in ∼3.5-log reductions in Salmonella (P < 0.05) after 6 h. In the fat phase, except for the SBS+PA combination, Salmonella reduction was not different from that for the positive control. When SBS was combined with organic acids, Salmonella inhibition was achieved at a lower SBS concentration, indicating a possibly synergistic effect of these chemicals. These results suggest that inclusion of SBS or LA at 0.5% individually or a combination of SBS with organic acids could reduce Salmonella in rendered chicken fat contaminated by residual water encountered during storage and transport.


Assuntos
Ração Animal , Galinhas , Gorduras na Dieta , Microbiologia de Alimentos , Salmonella typhimurium , Sulfatos , Ração Animal/microbiologia , Animais , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Salmonella typhimurium/efeitos dos fármacos , Sulfatos/farmacologia
7.
Front Vet Sci ; 6: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761312

RESUMO

The presence of Salmonella spp. on poultry products is one of the leading causes of foodborne illness in the United States. Therefore, novel antimicrobial substances are being explored as potential interventions in poultry processing facilities. The objective of the current study was to evaluate the efficacy of varying concentrations of sodium bisulfate salt, SBS, alone or in combination with peracetic acid, PAA, in 15 s whole part dips. Ninety six drumsticks (4 replications, 8 treatments, 3 days) were inoculated separately in a 400 mL solution of nalidixic resistant (NA) Salmonella Enteritidis (107 CFU/mL) and allowed to adhere for 60 to 90 min at 4°C for a final concentration of 106 CFU/g. The experimental treatments included: a no treatment (control), and 15 s dips in 300 mL of tap water alone (TW) or with the addition of 1; 2; and 3% SBS; 1; 2; and 3% SBS+PAA. After treatment, drumsticks were stored at 4°C until microbial sampling was conducted. On d 0, l, and 3, drumsticks were rinsed in 150 mL of nBPW for 1 min, 100 µL of rinsate was serially diluted, spread plated on XLT4+NA (20 µg/mL), and incubated aerobically at 37°C for 24 h. Log-transformed counts were analyzed using a randomized complete block design (day) using One-Way ANOVA, polynomial contrasts, and pairwise comparisons with means being separated by Tukey's HSD with a significance level of P ≤ 0.05. A treatment by day interaction (P = 0.14071) was not substantial. Thus, the treatment effect was investigated separately by days. Over time, a linear trend was observed in S. Enteritidis concentration when SBS was increased (1 < 2 < 3%). The concentration of S. Enteritidis was different between 1% SBS and 1% SBS+PAA on d 0. However, the level of S. Enteritidis was not different among drumsticks treated in 2 and 3% SBS and 2 and 3% SBS+PAA across d 0, 1, 3. The application of 3% SBS alone or in combination with 200 ppm of PAA is capable of reducing the presence of Salmonella over a 3-d refrigeration period; potentially increasing the safety of poultry products for consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...